
LA-UR-20-22439
Approved for public release; distribution is unlimited.

Title: The Differential Equations That Model Diseases

Author(s): Miller, Jonah Maxwell

Intended for: Outreach
Web

Issued: 2020-03-18

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

The Differential Equations That Model Diseases

March 16, 2020

Jonah M. Miller, Scientist, CCS-2, Los Alamos National Lab

1 Introduction

In this brief tutorial, I will describe the simplest way of modeling a deadly infectious disease, such
as COVID-19. I will show that at early times, t he disease grows exponentially, but at late times,
falls off like a Bell curve. I will solve the equations numerically with Python

A common mathematical model is the so-called compartmental model, where diseases can
move people between "categories" such as healthy, infectious, or truly sick. This is a large, well
established field and there are many good resources on this topic. I started with the SIAM review
article The mathematics of infectious diseases (Hethcote, 2000). However, there are many excellent
textbooks and more modern reviews as well.

In [43]: # Import python modules we need
%matplotlib inline
import numpy as np
import scipy as sp
import matplotlib as mpl
from matplotlib import pyplot as plt
mpl.rc('font',size=16)

2 The SIR Model

We will use the SIR model, where the categories are: - Susceptible - Infectious - Recovered
This model was first proposed by Kermack and McKendrick in their seminal work, now

known as Kermack-McKendrick theory.
We use a system of differential equations to model the number of people in each category.

First some definitions. We use the variables S, I, and R to represent the number of people in each
category. The total number of people is N. Therefore, the sum of people over all three categories
must equal the total population:

S + I + R = N

In general, S, I, R, and N can all be functions of time and space. An important assumption of
this model is that people who recover from the disease are immune and can’t carry it or be
re-infected. This appears to be true for COVID-19 but it is not always true.

For simplicity, we assume that they are a function only of time, which we will call t. This
allows us to treat the problem with ordinary, rather than partial, differential equations. Further,

1

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
https://epubs.siam.org/doi/10.1137/S0036144500371907
https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118

we will begin our analysis by assuming there are no births or deaths and N is a constant. By the
end of the tutorial, however, we will move beyond this simplistic assumption.

2.1 No Deaths

Assuming no births or deaths, our equations are:

dS
dt

= −β
SI
N

(1)

dI
dt

= β
SI
N

− γI (2)

dR
dt

= γI (3)

The symbols here are: - β is the infection rate. An infected individual infects βN other individ-
uals per unit time. - γ is the average recovery rate such that 1/γ is the average time it takes for an
individual to recover from the disease

A common metric of a disease the power of infection, which is the ratio of β and γ:

R0 =
β

γ

These equations are often simplified by working with the fractions of the population that are
infected, susceptible, etc. These are denoted with lower-case variables

s = S/N (4)
i = I/N (5)
r = R/N (6)

so that the SIR equations become

ds
dt

= −βsi (7)

di
dt

= βsi − γi (8)

dr
dt

= γi (9)

2.1.1 The values of the parameters

Let’s try this out and see if we can model COVID-19. We will work in units of days. So, days to
recovery, for example, is 1/γ. The official time to self-quarantine for COVID-19 is 14 days, so I
will set

γ = 1/14.

We will set β as
β = γR0

The infectious power of the disease is between 2 and 5. It depends on countermeasures imple-
mented. i.e., R0 = 5 if nothing is done, and it can be as low as 2 if people are careful. Let’s encode
that in Python:

2

In [76]: def get_beta_gamma(R=5,recovery_time=14):
"""Returns beta and gamma based
on recovery time and infectious power R
"""
gamma = 1./recovery_time
beta = R*gamma
return beta,gamma

beta,gamma = get_beta_gamma()
print("beta = {}\ngamma = {}".format(beta,gamma))

beta = 0.3571428571428571
gamma = 0.07142857142857142

Our differential conditions need initial data. At the beginning, there has to be at least one
infected person, since the disease has to start somewhere. In the early stages of the infection in the
United States, there were 10s of cases, out of 327 million. That’s something like

i(t = 0) = 10−8.

We’ll assume
r(t = 0) = 0

to start, and that
s(t = 0) = 1 − i(t = 0).

Let’s encode that in Python:

In [77]: i0 = 1e-8
r0 = 0
s0 = 1 - i0

Let’s try solving this. We will use scipy’s ODE integrator to solve the equations. It solves
vector equations of the form

dU
dt

= f (t, U)

in our case
U = (s, i, r)

and
f (t, U) = (−βsi, βsi − γsi, γi)

We’ll encode the solution as a two-dimensional numpy array, where the row is time, and each
column is U.

In [78]: num_times = 180 # simulate for half a year
times = np.arange(num_times)
Us = np.empty((num_times,3))
Us[0] = np.array([s0,i0,r0])

We’ll encode the right-hand-side f as a Python function

3

In [79]: def rhs(t, U, beta, gamma):
s,i,r = U[0],U[1],U[2]
return np.array([-beta*s*i,beta*s*i-gamma*i,gamma*i])

Let’s load up the integrator code and set the initial conditions and parameters β and γ

In [89]: # import the tool
from scipy.integrate import ode
create the integrator
integrator = ode(rhs)
set initial conditions and parameters
beta,gamma = get_beta_gamma(R=5,recovery_time=14)
integrator.set_initial_value(Us[0],0)
integrator.set_f_params(beta,gamma)

Out[89]: <scipy.integrate._ode.ode at 0x7f9e8b3a9710>

And let’s integrate!

In [90]: for i in range(len(times)-1):
t = times[i+1]
integrator.integrate(t)
Us[i+1] = integrator.y

Let’s see what it looks like. We can get s, i, and r as the columns of matrix:

In [91]: s,i,r = Us[:,0],Us[:,1],Us[:,2]

And let’s plot:

In [92]: plt.plot(times,s,label='susceptible')
plt.plot(times,i,label='infected')
plt.plot(times,r,label='recovered')
plt.legend()
plt.xlabel('time (days)')
plt.ylabel('fraction of total population')

Out[92]: Text(0, 0.5, 'fraction of total population')

4

You can see the "bell curve" people talk about in the news, which we want to flatten by reduc-
ing the infectious power of the disease. Making R0 smaller will accomplish that. (Try it yourself!
Change R0 above. Try setting it to 3 or 4. You may also need to play with the duration of the
simulation.) Something terrifying you should note. In the worst case scenario, everyone gets the
disease and half the population gets it at once. That would completely overwhelm a country’s
medical system. Which we currently see happening in real time in Italy.

It’s informative to look at this plot with the y-axis on a log scale:

In [93]: plt.semilogy(times,s,label='susceptible')
plt.plot(times,i,label='infected')
plt.plot(times,r,label='recovered')
plt.legend()
plt.xlabel('time (days)')
plt.ylabel('fraction of total population')

Out[93]: Text(0, 0.5, 'fraction of total population')

5

While the population is susceptible to the disease, the number of infected cases grows expo-
nentially. After a critical number of people are infected and begin to recover, the number of cases
decays exponentially. This exponential growth is the reason why things can get out of hand so
quickly. Monday is normal. On Friday, everyone is buying all the toilet paper. Changing the
infectious power of the disease changes the rate of exponential growth, which is something we
want.

2.2 Including Deaths: The SIRD Model

Up until now, we have assumed that the disease is non-fatal. What about a fatal disease? We
include this by adding a new category, D for deceased, with

d = D/N

Now N is the the population at the beginning of the outbreak. We also add a new rate,

σ,

which is the case-fatality rate---the number of infected people who die per unit time. Our fraction
equations now become:

6

ds
dt

= −βsi (10)

di
dt

= βsi − (γ + σ)i (11)

dr
dt

= γi (12)

dd
dt

= σi (13)

We can relate σ to γ as
σ = R1γ,

where R1 is the fraction of people who have the disease who die. For COVID-19, that’s bout 3%.
Or:

σ ≈ 3γ/100

Let’s code it up.

In [132]: R1 = 3./100.

To start, nobody has died yet.

In [116]: d0 = 0

New initial conditions:

In [117]: num_times = 180 # simulate for half a year
times = np.arange(num_times)
Us = np.empty((num_times,4))
Us[0] = np.array([s0,i0,r0,d0])

New right-hand-side:

In [118]: def rhs(t, U, beta, gamma, sigma):
s,i,r,d = U[0],U[1],U[2],U[3]
return np.array([-beta*s*i,

beta*s*i-(gamma+sigma)*i,
gamma*i,
sigma*i

])

Set up the integrator

In [133]: integrator = ode(rhs)
set initial conditions and parameters
beta,gamma = get_beta_gamma(R=3.4,recovery_time=14)
sigma = R1*gamma
integrator.set_initial_value(Us[0],0)
integrator.set_f_params(beta,gamma,sigma)

7

Out[133]: <scipy.integrate._ode.ode at 0x7f9e8aab6e10>

Integrate

In [134]: for i in range(len(times)-1):
t = times[i+1]
integrator.integrate(t)
Us[i+1] = integrator.y

And plot:

In [135]: s,i,r,d = Us[:,0],Us[:,1],Us[:,2],Us[:,3]

In [136]: plt.plot(times,s,label='susceptible')
plt.plot(times,i,label='infected')
plt.plot(times,r,label='recovered')
plt.plot(times,d,label='dead')
plt.legend(bbox_to_anchor=[0.985,0.7])
plt.xlabel('time (days)')
plt.ylabel('fraction of total population')

Out[136]: Text(0, 0.5, 'fraction of total population')

In [137]: plt.semilogy(times,s,label='susceptible')
plt.plot(times,i,label='infected')
plt.plot(times,r,label='recovered')
plt.plot(times,d,label='dead')
plt.legend(bbox_to_anchor=[0.985,0.7])
plt.xlabel('time (days)')
plt.ylabel('fraction of total population')

8

Out[137]: Text(0, 0.5, 'fraction of total population')

The story roughly the same. But now that red line reflects people who never recover.

3 Limitations

There are of course significant limitations to this toy model. We neglect: - Births - How the disease
spreads or does not spread throughout space. Social distancing will help! - How the global health
care systems can react or fail to react as cases grow - How different people and different age groups
are more or less susceptible to the disease

So take all this analysis with a grain of salt. But it helped me understand at least a little bit of
what’s going on and build a better intuition for what’s happening right now.

4 Further reading

Here are some resources you may find helpful as you look at epidemiology and disease modeling:

• Triplebyte’s Tutorial on disease modeling
• Kai Sasaki’s ML fit of COVID-19 cases to the analytic solution of the SIR model
• SciPy’s SIR example
• The Mathematics of Infectious Diseases, Hethcote, 2000
• A Contribution to the Mathemat of Epidemics, Kermack and McKendrick, 1927
• Compartmental Models in Epidemiology

9

https://triplebyte.com/blog/modeling-infectious-diseases
https://www.lewuathe.com/covid-19-dynamics-with-sir-model.html
https://scipython.com/book/chapter-8-scipy/additional-examples/the-sir-epidemic-model/
https://epubs.siam.org/doi/10.1137/S0036144500371907
https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118
https://link.springer.com/chapter/10.1007/978-3-540-78911-6_2

	Introduction
	The SIR Model
	No Deaths
	The values of the parameters

	Including Deaths: The SIRD Model

	Limitations
	Further reading

